Barducci A., Guzzi D., Marcoionni P., Pippi I. e Poggesi M. (2002) – Tecniche avanzate di telerilevamento da aereo per l’osservazione della Terra. AIT informa, 24, 25-31.

Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. (2013) - High-resolution airborne hyperspectral and thermal imagery for early detection of verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 139, 231–245

Camargo, A., and Smith, J. S. (2009). Image pattern classification for the identification of disease causing agents in plants. Comput. Electron. Agric. 66:121-125.

Caruso, G., Tozzini, L., Rallo, G., Primicerio, J., Moriondo, M., Palai, G., Gucci, R., (2017). Estimating biophysical and geometrical parameters of grapevine canopies ('Sangiovese') by an unmanned aerial vehicle (UAV) and VIS-NIR cameras. Vitis 56: 63-70.

Garfagnoli, F., Ciampalini, A., Moretti, S., Chiarantini, L., Vettori, S. (2013a) - Quantitative mapping of clay minerals using airborne imaging spectroscopy: New data on mugello (Italy) from SIM-GA prototypal sensor European Journal of Remote Sensing, 46 (1), pp. 1-17.

Garfagnoli, F., Martelloni, G., Ciampalini, A., Innocenti, L., Moretti, S. (2013b) - Two GUIs-based analysis tool for spectroradiometer data pre-processing Earth Science Informatics, 6 (4), pp. 227-240.

Hillnhütter, C., Schweizer, A., Kühnhold, V., and Sikora, R. A. (2010) - Remote sensing for the detection of soil-borne plant parasitic nematodes and fungal pathogens. Pages 151-165 in: Precision crop protection—The challenge and use of heterogeneity. E.-C. Oerke, R. Gerhards, G. Menz, and R. A. Sikora, eds. Springer, Dordrecht.

Konanz, S., Kocsányi, L., and Buschmann, C. (2014) - Advanced multi-color fluorescence imaging system for detection of biotic and abiotic stresses in leaves. Agriculture 4:79-95

Leone A. e Perona G. (1995) - Scattering atmosferico e variazioni delle componenti spaziali nelle immagini tele rilevate. 1° corso avanzato AIT-CSEA "Telerilevamento delle risorse terrestri”.

Mahlein, A.-K., Oerke, E.-C., Steiner, U., and Dehne, H.-W. (2012) - Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 133:197-209.

Neumann, M., Hallau, L., Klatt, B., Kersting, K., and Bauckhage, C. (2014) - Erosion band features for cell phone image based plant disease classification. Pages 3315-3320 in: Proceeding of the 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, 24-28 August 2014.

Roelofsen, H.D.; van Bodegom, P.M.; Kooistra, L.; van Amerongen, J.J.; Witte, J.-P.M. (2015) - An evaluation of remote sensing derived soil pH and average spring groundwater table for ecological assessments. Int. J. Appl. Earth Obs. Geoinf. 43, 149–159

Sankaran, S., Mishra, A., Ehsani, R., and Davis, C. (2010) - A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 72:1-13.

Zarco-Tejada, P.J.; Catalina, A.; González, M.R.; Martín, P. (2013) - Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. Remote Sens. Environ. 136, 247–258

Zarco-Tejada, P.J.; González-Dugo, M.V.; Fereres, E. (2016) - Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sens. Environ. 179, 89–103.